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A new, simple, one-step synthesis of 3-substituted 3,4-dihydroisocoumarins is developed. The products
are obtained by the reaction of o-methoxycarbonyl arenediazonium bromides with unsaturated com-
pounds in the presence of CuBr as a catalyst.
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Isocoumarin and 3,4-dihydroisocoumarin derivatives are well-
known compounds isolated from a wide variety of natural sources,
and which exhibit a broad range of biological properties1,2 such as
antifungal,3 antiallergic, antimicrobial,4 immunomodulatory,5 anti-
tumour and/or cytotoxic,6 anti-inflammatory,7 plant growth inhi-
bition8 and enzyme inhibitory9 activity. Isocoumarin derivatives
are important precursors in the synthesis of many naturally occur-
ring isoquinoline alkaloids and their analogues.10

A number of methods have been described for the synthesis of
isocoumarins. The most common synthetic approach involves
cyclization of homophthalic or 2-methylbenzoic acid derivatives.11

While these transformations are widely used, they suffer from sev-
eral notable disadvantages such as (i) the starting materials are of-
ten commercially unavailable, (ii) the reaction conditions are
difficult to control and (iii) all the reagents must be of a high purity
grade.

Another important method for the construction of the isocoum-
arin ring involves Sonogashira coupling followed by cyclization of
alkynes containing a carboxylate or other substituent in proximity
to the triple bond (Scheme 1).12

A number of isocoumarins have been prepared in good yields
via Pd-catalyzed annulation of internal alkynes.13 However, this
method is somewhat limited in synthetic scope since it is highly
selective for symmetrical disubstituted acetylenes. Furthermore,
2-iodobenzoic acid reacts with allene derivatives under palladium
catalysis to afford the corresponding isocoumarins.14

The purpose of our work was to study the syntheses of 3,4-
dihydroisocoumarins via the Meerwein arylation reaction. Various
approaches to the synthesis of benzoheterocycles from diazonium
salts have been investigated. Intramolecular cyclization occurred
in the reaction of unsaturated compounds with arenediazonium
salts, which contained a suitable substituent ortho- to the diazo-
nium group.15
ll rights reserved.

).
A two-step synthesis of 3-substituted 3,4-dihydroisocoumarins
based on the Meerwein arylation reaction was reported earlier.16,17

3-Cyano-3,4-dihydroisocoumarin was synthesized by the reaction
of sodium with 2-(2-chloro-2-cyanoethyl)benzoic acid, which
was obtained by the CuCl2-mediated Meerwein arylation of acrylo-
nitrile with 2-carboxybenzenediazonium chloride.16

Herein, we report a one-pot synthesis of 3,4-dihydroisocoum-
arin derivatives 3a–h via the CuBr-catalyzed reaction of o-
methoxycarbonyl benzenediazonium bromides 1a–d with
unsaturated compounds 2a–d (Table 1). The key step involves
intramolecular cyclization to give compounds 3a–h. The reac-
tions occurred under mild conditions in water–polar organic
solvent medium [water–acetone (1:2) was found to be the best].
o-Ethoxycarbonyl benzenediazonium bromides were also con-
verted into 3,4-dihydroisocoumarins 3a–h in a similar manner
to 1a–d.18

In order to investigate the scope of this reaction, o-methoxy-
carbonyl benzenediazonium chloride 4 was reacted with methyl
acrylate, ethyl acrylate and acrylonitrile. In this case, the usual
Meerwein arylation products 5a–c were obtained (Scheme 2
and Table 2, entries 1–3), and no cyclic products were isolated.
Moreover, CuCl and FeCl2

19 were also used as catalysts in this
reaction which proceeded in a similar manner to give com-
pounds 5a–c.20

o-Carboxybenzenediazonium bromide 6 was examined in the
reactions with methyl and ethyl acrylates 2a,e, however, no cycli-
zation reaction was observed. Acids 7a,b were obtained using CuBr
as catalyst (Scheme 3 and Table 2, entries 4 and 5).21
X O

X = COOH, COOR1, CN

Scheme 1. Construction of the isocoumarin ring.



Table 1
Formation of 3,4-dihydroisocoumarins
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Scheme 2. Formation of the chloroarylation products. The reaction was carried out
with 4 (obtained from 0.1 equiv of methyl anthranilate, HCl (40 mL) and 0.12 equiv of
NaNO2), 0.1 equiv of the corresponding olefin, acetone (100 mL), CuCl2 (3.5 g), 0.5–1 h.
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In summary, we have described a simple and efficient method
for the preparation of 3,4-dihydroisocoumarin derivatives. Cycliza-
tion occurred to yield 3,4-dihydroisocoumarins 3, when o-alkoxy-
carbonyl benzenediazonium bromides were used. In the case of o-
carboxybenzenediazonium bromides and o-alkoxycarbonyl benze-
nediazonium chlorides, acyclic products were obtained. Further
investigations on the scope and limitations of the reported method
are in progress.



Table 2
Synthesis of arylation products 5a–c and 7a,b

Entry Diazonium salt Olefin Catalyst Product Yielda (%)
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Scheme 3. Formation of the bromoarylation products. The reaction was carried out
with 6 (obtained from 0.1 equiv of anthranilic acid, HBr (40 mL, 48%) and 0.12 equiv of
NaNO2), 0.1 equiv of the corresponding olefin, acetone (100 mL), CuBr (3.5 g), 0.5–1 h.
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